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Summary
Background The persistence of a replication-competent latent viral reservoir (RC-LVR) during antiretroviral therapy
(ART) is a barrier to the development of a cure for HIV-1, but the role of viral genes in influencing RC-LVR size
is unclear. We aimed to assess whether the magnitude by which the HIV-1 accessory protein Nef evades the
adaptive immune response by downregulating MHC-I or CD4, or both, from the surface of infected cells is
associated with the rate at which the RC-LVR in people with HIV-1 changes during long-term ART (>1 year).

Methods We conducted an exploratory cohort study in which nef genes were sequenced from outgrowth viruses
derived from the quantitative viral outgrowth assay (QVOA) for a group of people with ART-suppressed HIV-1 in
Uganda between 2015 and 2020. Study participants were selected from the Rakai Health Sciences Program
(RHSP) LVR cohort, a cohort of 90 adults (aged ≥18 years) who were HIV-1 positive, receiving ART, and had
maintained viral suppression for at least 1 year at the time of study enrolment. For this study, participants were
required to have available p24+ QVOA wells that contained a single viral outgrowth isolate, as assessed by
next-generation sequencing. In cases where further sequencing identified wells containing multiple viral clones, all
sequenced nef variants were included for functional analysis. The unique isolated nef variants were used to
generate pseudoviruses, which were employed to measure cell surface CD4 and MHC-I downregulation in infected
CD4+ Sup-T1 cells via flow cytometry. The size and rate of change of the RC-LVR in participants was estimated
using previous QVOA results and a Bayesian model. We then assessed whether a correlation existed between the
extent to which the Nef proteins downregulated cell surface MHC-I and CD4 and the calculated RC-LVR rate of
change during the study period.

Findings 14 (15%) of 90 participants from the RHSP cohort met the inclusion criteria and were enrolled in this study.
49 nef sequences were isolated from these participants. We observed variability in participant-derived Nef-mediated
cell surface MHC-I downregulation (median 114⋅88% [IQR 104⋅93–121⋅51] of the downregulation capacity of NL4-3
Nef) and CD4 downregulation (94⋅50% [84⋅05–100⋅16] of NL4-3 Nef). The estimated rate of change of the RC-LVR
was positive for four participants. For one donor, the rate of change was significantly positive (7⋅4 × 10–4 logit
infectious units per million [IUPM] per day [95% credibility interval 3⋅2 × 10–4 to 1⋅2 × 10–3]) over the course of the
study period (2015–20). The estimated rate of change of the RC-LVR for the remaining ten participants was
negative, and significantly negative in four donors (–1⋅1 × 10–3 logit IUPM per day [95% credibility interval
–1⋅8 × 10–3 to –3⋅7 × 10–4]; –1⋅4 × 10–3 [–2⋅0 × 10–3 to –8⋅5× 10–4]; –7⋅0× 10–4 [–1⋅3× 10–3 to –1⋅6 × 10–4]; and –2⋅0 × 10–3

[–2⋅9 × 10–3 to –1⋅1 × 10–3]). A significant relationship between Nef-mediated MHC-I downregulation and the
RC-LVR rate of change during the 5-year study period (r=0⋅6088 [95% CI 0⋅2366 to 0⋅9810]; p=0⋅023) was found, in
which less efficient MHC-I downregulation correlated with faster RC-LVR decay during long-term ART. By
contrast, Nef-mediated CD4 downregulation was not associated with RC-LVR rate of change during the 5-year
study period (–0⋅1604 [–0⋅7311 to 0⋅4102]; p=0⋅58).

Interpretation Nef-mediated MHC-I downregulation might contribute to HIV-1 persistence during long-term ART.
Strategies to inhibit Nef-mediated MHC-I downregulation could represent a viable therapeutic avenue to reduce
the size of the latent reservoir in vivo, improving treatment outcomes in people with HIV-1.
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Introduction
Antiretroviral therapy (ART) suppresses HIV-1 replication
and disease progression allowing people with HIV-1 to live
near-normal lives.1 However, ART regimens remain
non-curative, as evidenced by rapid viral rebound following
ART cessation.2 HIV-1 persistence in vivo is due to the
existence of stable, heterogenous cellular reservoirs
harbouring integrated latent HIV-1 proviruses.3 This latent
viral reservoir (LVR) is formed shortly following HIV-1
infection and persists despite ART through replication
and clonal expansion of latently infected cells.4,5 The
inducible, replication-competent LVR (RC-LVR) decays very
slowly, necessitating lifelong ART to control infection.5–7

Significant efforts are underway to identify factors that
accelerate the decay of the RC-LVR. Host factors associated
cross-sectionally with a smaller LVR include early ART ini-
tiation (<6months after infection), younger age, female sex,
and lack of co-infection with cytomegalovirus or Epstein–
Barr Virus.8–11 Additionally, the magnitude of HIV-specific
granzyme B responses, primarily from HLA-I-restricted
Research in context

Evidence before this study
We searched Web of Science on Oct 23, 2019, with no restrictions
on language or calendar year using the following search terms:
(“latent reservoir” OR “reservoir size”) AND “HIV” AND “Nef” AND
“subtype” AND (“ART” OR “cART”), which resulted in one
manuscript published in Journal of Virology in April, 2019, the time
at which this study commenced. A more recent search done on
Jan 17, 2025 confirms that all relevant literature is still captured in
this Journal of Virology study. This manuscript quantified the total
latent reservoir bymeasuringproviral DNA loads and the size of the
replication-competent latent viral reservoir (RC-LVR) using
quantitative viral outgrowth assay (QVOA). This cross-sectional
study involved 30 people with HIV-1 who were placed on
antiretroviral therapy (ART) in the acute or early stages of infection
(<6 months) and used QVOA to calculate the size of RC-LVR after
48 weeks following ART initiation. This study found that the
extent to which the HIV-1 accessory protein Nef downregulated
cell surface MHC-I, but not CD4, was positively correlated with the
size of the RC-LVRafter 48weeks ofART, suggestingHIV-1Nef as a
viral factor contributing to the size of the RC-LVR accordingly.
However, this cross-sectional study could not address the rate at
which the RC-LVR changes over time during long-term ART
(>1 year). Furthermore, it involved a cohort of participants with
HIV-1 in North America, further highlighting a gap in knowledge
regarding the RC-LVR for people with HIV-1 in areas where non-B
HIV-1 subtypes predominate.

Added value of this study
To our knowledge, this is the first study to identify any factor
associated with accelerated RC-LVR decay in people with HIV-1.
CD8+ cytotoxic T lymphocytes (CTLs), negatively corre-
lates with the size of the RC-LVR.12 Viral-specific factors
could also influence reservoir size. Indeed, infection with
non-B HIV-1 subtypes is associated with smaller reservoirs
than infection with subtype B HIV-1 strains.13–15

The HIV-1 accessory protein Nef facilitates evasion of
host adaptive immune responses primarily by down-
regulating MHC-I and CD4 from the cell surface.16–19

Nef-mediated downregulation of cell surface CD4
renders infected cells more resistant to clearance via
the antibody-dependent cellular cytotoxicity (ADCC)
response.18 Additionally, Nef-mediated MHC-I
downregulation reduces viral antigen presentation to
MHC-I-restricted CTLs.16,20 In the context of the LVR, the
proportion of HIV-1 proviruses containing intact nef
open-reading frames (ORFs) increases in ex-vivo cultured
infected CD4+ T cells exposed to HIV-1 specific CTLs,
suggesting Nef could contribute to the persistence of
latently infected cells by facilitating evasion of CTL recognition
and killing.21
This study additionally provides valuable insights into the RC-LVR
of people with HIV-1 in non-subtype B contexts, which have been
studied less than subtype B contexts. Our study measured the
RC-LVRviaQVOA ina cohort ofpeoplewithHIV-1 inUgandaover a
5-year sampling period. This allowed the RC-LVR rate of change to
be calculated for each participant using a previously described
Bayesian model. Nef sequences from 14 study participants were
derived from QVOA outgrowth wells, and the ability of the
different Nef proteins to downregulate cell surfaceMHC-I and CD4
within infected cells was calculated. We found that the extent to
which Nef downregulates cell surface MHC-I, but not CD4, was
inversely correlated with the rate of RC-LVR decay over time
during ART. Namely, efficient Nef-mediated MHC-I
downregulationwas associatedwith a slower rate of RC-LVR decay
over time.

Implications of all the available evidence
Our results identify Nef-mediated downregulation of cell surface
MHC-I as an important viral correlate to longitudinal changes in
the size of the RC-LVR during long-term ART. Because curative
efforts are focused on eradicating the existing RC-LVR in people
with HIV-1, our results and others suggest that pharmacologically
targeting this Nef function could represent a viable therapeutic
avenue to reduce the size of the RC-LVR in future curative
approaches in both subtype B and non-subtype B contexts. Such
strategies could represent an important step towards a functional
cure for HIV/AIDS.
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In a cross-sectional study published in 2019 of a cohort of
people with HIV-1 who initiated ART during acute or early
infection (<6 months after infection), the ability of Nef to
downregulate MHC-I, but not CD4, correlated positively
with both overall proviral burden and RC-LVR size after
48 weeks of virally suppressive ART.13 Because the RC-LVR
decays slowly during virally suppressive ART,7 it remains
unknown whether the ability of Nef to evade these adaptive
immune responses influences the rate of RC-LVR decay
during long-term virally suppressive ART. Most studies
examining the RC-LVR have been done in high-income
countries, which are typically dominated by subtype B
HIV-1 strains.22 Thus, little is known regarding the effect of
non-subtype B Nef proteins on the size of the RC-LVR.
Here, we characterised whether the ability of non-subtype
B Nef proteins to evade adaptive immune responses—by
downregulating cell surfaceMHC-I andCD4—is associated
with the maintenance of the RC-LVR during virally
suppressive ART by comparing these functional outputs
with the calculated RC-LVR change over a 5-year study
period.
For the LANL HIV sequence

database see https://www.hiv.

lanl.gov/content/sequence/HIV/

mainpage.html

For IQ-TREE statistical software

see http://www.iqtree.org
Methods
Study design and participants
We conducted an exploratory cohort study to examine
longitudinal trends in the size of the HIV reservoir in
Ugandan adults with non-subtype B HIV-1. This cohort
(n=14) was nested within the Rakai Health Sciences
Program (RHSP) LVR cohort (n=90), a longitudinal cohort
of people with HIV-1 living in the Rakai district in
Uganda.10,14,15 The overarching RHSP LVR cohort was
recruited to examine longitudinal trends in the size of the
HIV reservoir in Ugandan adults with non-subtype B
HIV-1. Main inclusion criteria for the overarching cohort
(n=90)were adults (aged≥18 years)whowereHIV-1positive,
receivingART, andhadmaintained viral suppression for at
least 1 year at the time of study enrolment. Specifically,
participants had two plasmaHIV-1 RNAmeasurements of
less than 40 copies per mL, 10–18 months apart with no
intervening detectable result. 70 participants who met
these criteria were enrolled in 2015. A second group of
20 participants were recruited in 2016 who also met the
previous criteria and were additionally required to have an
estimated date of seroconversion (date ofHIVnegative test
result available). Study visits included a blooddraw (180mL)
for standard quantitative viral outgrowth assay (QVOA) to
estimate the frequency of resting CD4+ T cells containing
inducible replication-competent proviruses.7,23 For each
participant, the rate of change of the RC-LVR (measured by
QVOA) was estimated using a Bayesian model between
enrolment (2015 or 2016) and September, 2020.15

For this nested study and the analysis of Nef protein
function, we initially included all participants from the
RHSPLVRcohort forwhomp24+QVOAwells that contained
a single viral outgrowth isolate (as assessed by next-generation
sequencing) were available. In cases where further
www.thelancet.com/microbe Vol ▪ ▪ 2025
sequencing identified wells containing multiple viral
clones, all sequenced nef variants were included for func-
tional analysis. During the study timeframe (2015–20),
Uganda implemented a nationwide change in the ART
regimen beginning in 2018 to include the integrase strand
transfer inhibitor dolutegravir. The subset of participants
included in this study were all administered nucleoside
reverse transcriptase inhibitor (NRTI)-basedandnon-nucleoside
reverse transcriptase inhibitor (NNRTI)-based ART
regimens before switching to dolutegravir-containing
regimens. All participants were required to be followed
up annually during the study timeframe (2015–20) upon
study enrolment. Donor 45 withdrew after the 2017
timepoint (appendix 3 pp 2–3).
All participants provided informed written consent to

study participation and use of stored samples for future
research. Ethical approval was obtained from the Institu-
tional Review Boards (IRBs) at the USNational Institutes of
Allergy and Infectious Diseases (14-I-N123), Uganda
Virus Research Institute (GC/127/461), Uganda National
Council for Science and Technology (HS1651), and
Johns Hopkins Medical Institutions (CR00044266/
IRB00038011). Research ethics approval was obtained from
WesternUniversity (124581) for the analysis of de-identified
data and stored samples.
Procedures
Upon study enrolment, cohort participants were adminis-
tered a questionnaire by study staff in the local language, in
which gender was self-reported with the option of male or
female. Detailed methodologies regarding the QVOA
analysis and Bayesian estimates used to calculate the size
and rate of change of the RC-LVR for study participants
have been described previously, and are summarised in
appendix 3 (p 8).15,24 QVOA wells with the presence of only
one viral outgrowth population, based onNGS data for gp41
or pol, or both, were selected, as previously described.24 Viral
RNA was extracted from positive viral outgrowth
supernatants (QIAamp Viral RNA Kit for RNA Extraction,
Qiagen, Germantown, MD, USA) and the nef genes were
reverse-transcribed (Qiagen OneStep RT-PCR Kit, Qiagen).
The reverse-transcribed primary nef genes were sequenced
by Sanger sequencing (nucleotides 8787–9407 of the
pNL4-3 proviral genome [Genbank accession number:
AF324493]), and nef-specific primers were designed to
amplify the nef genes selected from the positive viral
outgrowth supernatants for cloning into the replication-
deficient pNL4-3 Δgag/pol-enhanced GFP-Nef proviral
plasmid or synthesised using the GENEWIZ service
(Azenta Life Sciences, Chelmsford, MA, USA), as described
previously (appendix 3 p 8).17

The primary nef nucleotide sequences were aligned using
the HMM-align alignment method of the HIValign tool
hosted by the Los Alamos National Laboratory (LANL) HIV
sequence database web server.25 The aligned nucleotide
sequences were inputted into the IQ-TREE ModelFinder
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tool (version 1.6.12), where the TPM2u substitution rate
model was selected for phylogenetic construction because
this model had the lowest default Bayesian Information
Criterion (BIC) score. Themaximum likelihood phylogenetic
tree relating the aligned primary nucleotide nef sequences
was then constructed with IQ-TREE using the TPM2u
nucleotide base substitution rate model, incorporated
empirical state frequencies (+F), and rate variation
represented by a discrete gamma model with four rate
categories (+G4), and a proportion of invariable sites (+I).
The maximum likelihood phylogeny was constructed with
standard non-parametric bootstrap analysis with
10 000 replicate samples. The maximum likelihood tree
was rootedonNL4-3nef. The subtypeof theparticipant-derived
nef sequences was defined using the Recombinant
Identification Program (RIP; version 3.0) hosted on the
LANL web server using a window size of 500 and a
confidence threshold of 99%.26

HEK293Tcells (ATCC,Manassas,VA,USA)weremaintained
in Dulbecco’s Modified Eagle’s Medium containing 4 mM
L-glutamine (Cytiva Life Sciences, Vancouver, BC,
Canada) and 4⋅5 g/L glucose (Cytiva Life Sciences), and
supplemented with 10% fetal bovine serum (FBS; Wisent,
Saint-Jean-Baptiste, QC, Canada) and 1% penicillin and
streptomycin (HyClone, Logan, UT, USA). Sup-T1 cells
(ATCC) were maintained in Roswell Park Memorial
Institute medium 1640 (Wisent) and supplemented with
1% penicillin–streptomycin (HyClone), 1% sodiumpyruvate
(HyClone), 1% non-essential amino acids (HyClone), 2 mM
L-glutamine (HyClone), and 10% FBS (Wisent). All cells
were grown at 37◦C with 5% CO2.
Methodologies related to the Nef-mediated cell surface

MHC-I and CD4 downregulation assay are described in
appendix 3 (pp8–9). Briefly, vesicular stomatitis virus protein
G (VSV-G)-pseudotyped viruses were generated upon
transfection of HEK293T cells and used to infect Sup-T1
cells via spinoculation. Infection experiments were
performed four times, and in each experiment the
Nef-deficient (ΔNef; proviral construct in which a premature
stop codon is introduced in the N-terminal region of the
protein, preventing the expression of full-length Nef) and
NL4-3 Nef controls were performed in triplicate, whereas
all other infections were performed in singlet. After 48 h,
cells were stained with the Zombie near-infrared viability
dye (BioLegend, San Diego, CA, USA), fixed with 1%
paraformaldehyde (Thermo Fisher Scientific,Whitby, ON,
Canada), and stainedwithfluorophore-conjugated antibodies
(BioLegend) to detect cell-surfaceMHC-I and CD4. Cell-surface
MHC-I and CD4 levels—quantified as geometric mean
fluorescence intensity (gMFI)—were calculated via flow
cytometry (appendix 3 p 9).

Outcomes
The primary objective of this nested study was to assess
whether a correlation existed between the ability of
Nef proteins derived from the study participants to
downregulate cell surfaceMHC-I andCD4and the calculated
rate of change of the RC-LVR during the defined study
period (2015–20). Outcome measures of this study
included quantifying the extent to which Nef proteins
derived from single outgrowth viruses for the study
participants downregulated cell surface MHC-I and CD4
within infected cells and quantifying the association
between Nef-mediated MHC-I or CD4 downregulation, or
both, and changes in RC-LVR size as a function of time
during virally suppressive ART. These analyses enabled
the characterisation of these Nef functions within
individual participants (when more than one Nef protein
was tested) and between participants.

Statistical analysis
Because this study was an exploratory analysis and the type
of variability observed in theNef responseswas unknown at
study initiation, a power calculation was not performed.
For Nef functional experiments, experimental replicates

were omitted from analysis if cell viability was below
50%. Differences in Nef-mediated MHC-I and CD4 down-
regulation between Nef variants was first established using
the Kruskal–Wallis equality-of-populations rank test,
followed by post-hoc pairwise comparisons between each
participant-derived Nef and the NL4-3 Nef positive control
using a Dunn’s test (appendix 3 p 9).
We next tested if participant-specific Nef outputs

correlatedwith thechange inRC-LVRsize calculatedusinga
Bayesian model (appendix 3 p 8).15 Because DTG initiation
could be associated with a temporary increase in
QVOA-based estimates in reservoir size,15 the analysis was
limited to the Bayesian estimate for the change in RC-LVR
size that included a correction for DTG initiation, as
described (appendix 3p8).15 For participantswithmore than
oneNef variant, themedianNef functional output across all
variants from a participant was used to estimate their
participant-specific Nef functional output (appendix 3 p 9).
Outputs were then correlated with the participant-specific
pre-DTG RC-LVR rates of change using Spearman’s rank
correlation. The 95% CIs on Spearman’s correlation coef-
ficients—denoted as r—were calculated by bootstrapping
with 1000 repeats.
To test whether Nef functional outputs differed by

subtype, variant-level and participant-level MHC-I and
CD4 downregulation were compared. For variant-level
comparisons, the median of four experimental replicates
for each variant was used. For participant-level comparisons,
the median function across all variants isolated from a
participant was compared. Differences between subtypes
were assessed using the Kruskal–Wallis equality-of-
populations rank test. Post-hoc pairwise comparisons
between subtypes were made using a Dunn’s test. The
medianCD4 andMHC-I downregulation for each subtype,
along with IQR, are presented.
For all statistical tests, p values less than or equal to

0⋅05 were considered statistically significant. Tests were
performed using Stata (version 18). Figures were generated
usingGraphPad Prism (version 8). GraphPad Prism (version 8)
www.thelancet.com/microbe Vol ▪ ▪ 2025
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Participants (n=14)

Age at enrolment, years 40⋅3 (39⋅7–45⋅3)
Sex

Male 9

Female 5

Pre-ART viral load, log10 copies per mL 4⋅47 (3⋅80–5⋅20)
Nadir CD4+ T cells, cells per μL 203 (137–335)

ART duration at enrolment, years 8⋅76 (3⋅21–9⋅80)
HIV nef subtype*

D 6

A1 6

C 1

Recombinant 1

HIV-1 Nef length, amino acids 207 (207–207)

Total primary nef sequences recovered 49

Unique nef sequences recovered per participant

1 5

2 1

3 1

4 4

5 1

8 1

10 1

Dataare normedian (IQR). ART=antiretroviral therapy. *Participantnef subtypeswere
identified using the Recombinant Identification Tool offered by the Los Alamos HIV
Sequence database.26

Table: Summary of clinical characteristics of study participants

Articles
was used to graph the linear regression best-fit lines with
95% CIs.

Role of the funding source
The funders of the study had no role in study design, data
analysis, data interpretation, or writing of the report.

Results
For this study, we selected 14 (15%) of 90 participants from
the RHSP LVR cohort. Participant demographics are sum-
marised in the table. The median age of participants at
enrolment was 40⋅3 years (IQR 39⋅7–45⋅3). There were nine
male participants and five female participants. The median
duration of ART at study enrolment was 8⋅76 years
(IQR 3⋅21–9⋅80). A switch from NRTI-based and NNRTI-
based ART to dolutegravir-containing regimens was
documented in 12 of 14 participants (appendix 3 pp 2–3).15

Overall, 49 nef sequences were isolated from the
14 participants. The nef sequences clustered with sub-
type D (24 [49%] of 49 nef sequences, six participants),
subtype A1 (20 [41%] nef sequences, six participants),
subtype C (four [8%] nef sequences, one participant),
and one recombinant A1/D subtype (one [2%] nef
sequence, one participant), which are the prevalent
subtypes in Uganda (table, figure 1).22,27 One nef
sequence from donor 17 (sequence identifier
17_4_1M13) encoded a premature stop codon located at
position 91 of the amino acid sequence (relative to the
NL4-3 Nef reference protein; figure 1; appendix 3 p 6)
and is predicted to not express full-length Nef. This viral
clone was observed in outgrowth assays as late as the
4-year timepoint. Of the remaining 48 nef sequences
encoding full-length Nef proteins, the median length
was 207 amino acids (IQR 207–207, range 203–218),
with most of the variability occurring within the
N-terminal region (appendix 3 p 6).
The gating schematic to identify single, live, and infected

cells during the MHC-I and CD4 downregulation assay is
detailed in figure 2A. The median functional outputs
with IQR and associated p-values are described in the
appendix 3 (pp 4–5). As expected, the Nef-deficient (ΔNef)
negative control did not downregulate cell-surface MHC-I
(figures 2B, 2D, and 3A) and CD4 (figures 2C, 2E, and 3B).
The least effective participant-derived nef was the variant
encoding a premature stop codon (sequence identifier
17_4_1M13), the protein product of which minimally
downregulated cell surface MHC-I (median 55⋅23%
[IQR 54⋅41–57⋅69] of the downregulation capacity of NL4-3
Nef; figures 2B, 2D, and 3A) and CD4 (median 9⋅07%
[7⋅72–12⋅01] of NL4-3 Nef; figures 2C, 2E, and 3B). Of the
remaining 48 full-length Nef variants, we observed
variability in functionality in the downregulation of both
MHC-I (median 114⋅88% [104⋅93–121⋅51] of NL4-3 Nef;
figure 3A) and CD4 (median 94⋅50% [84⋅05–100⋅16] of
NL4-3 Nef; figure 3B). Participant-derived Nef variants
generally downregulated cell-surfaceMHC-Imore efficiently
than NL4-3 Nef, with 23 (48%) of 48 full-length variants
www.thelancet.com/microbe Vol ▪ ▪ 2025
downregulating MHC-I significantly more efficiently than
NL4-3 Nef (figure 3A). By contrast, participant-derived
Nef isolates were generally less efficient than NL4-3
Nef at downregulating cell-surface CD4, with 14 (29%) of
48 full-length variants downregulating CD4 significantly
less than NL4-3 Nef (figure 3B). A summary of the median
functional outputs across four experimental replicates
with IQRs and associated p values is provided in the
appendix 3 (pp 4–5).
Next, we examinedwhether Nef-mediatedMHC-I or CD4

downregulation differed by HIV-1 subtype including all
49 tested Nef variants in this study. Because our cohort
included only one individual with subtype C Nef (donor 19,
four Nef variants), and one individual with subtype D/A1
recombinant Nef (donor 27, one Nef variant), we did not
makestatistical comparisonswith these subtypes.We found
no differences in Nef-mediated MHC-I downregulation
between subtypes D and A1 (24 [49%] of 49 variants vs
20 [41%] variants; median 114⋅01% [102⋅91–121⋅75] of
NL4-3 Nef vs 111⋅97 [104⋅25–118⋅98] of NL4-3 Nef,
respectively; p=0⋅32; appendix 3 p 7), but we did observe
significantlymore efficient CD4 downregulation by subtype
D Nef variants than by subtype A1 Nef variants (median
97⋅75% [IQR 94⋅01–108⋅63] of NL4-3 Nef vs 84⋅24%
[79⋅92–95⋅18] of NL4-3 Nef; p=0⋅0002; appendix 3 p 7).
Because Nef variants obtained from the same participant
might not be independent, we also examined differences in
the median MHC-I or CD4 downregulation for each
5
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Figure 1:Maximum likelihood phylogeny relating primary HIV-1 nef nucleotide sequences used in the present study
The maximum likelihood phylogenetic tree relating the aligned primary nef nucleotide sequences was constructed
with IQ-TREE using a TPM2u base substitution rate model with standard non-parametric bootstrap analysis with
10 000 replicate samples. The scale bar represents the estimated number of nucleotide substitutions per site. Internal
nodes of the Newick output tree from IQ-TREE were annotated with bootstrap support values as percentiles; nodes
with ≥70% support are shown accordingly. The individual primary nef isolates are coloured according to the
participant from which the sequences were derived. HIV-1 subtypes were identified via the Recombinant
Identification Programtool hosted by LosAlamosNational Laboratory and are listed after the participant identifiers.26

The shape of the individual tips corresponds to the timepoint from which the nef sequences were collected.
The phylogenetic tree is additionally rooted on the HIV subtype B reference strain NL4-3 nef. *nef variant
(sequence identifier 17_4_1M13) encoding a premature stop codon and predicted to not express full-length Nef.
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participant (median of Nef variants isolated from a participant,
for participants with more than one variant) between Nef
subtypes D (six of 14 participants) and A1 (six of 14
participants). Between individuals with subtype D and A1
Nef, we did not observe significant differences in
participant-level Nef-mediated MHC-I downregulation
(median 113⋅95% [IQR 108⋅02–118⋅49] of NL4-3 Nef vs
105⋅97 [101⋅22–110⋅77] of NL4-3 Nef, respectively; p=0⋅12;
appendix 3 p 7) or CD4 downregulation (96⋅59%
[95⋅03–103⋅58] of NL4-3 Nef vs 87⋅64% [83⋅93–93⋅22] of
NL4-3 Nef, respectively; p=0⋅17; appendix 3 p 7) in this
small cohort.
Wenext sought to assesswhetherNef-mediatedMHC-I or

CD4downregulation, or both, were associatedwith changes
in RC-LVR size as a function of time during virally
suppressive ART. A negative rate of change indicates the
sizeof theRC-LVRshrinks over time,whereas apositive rate
of change indicates growth. We found that Nef-mediated
MHC-I downregulation was significantly correlated
with the rate of change of the RC-LVR (r=0⋅6088
[95%CI 0⋅2366 to 0⋅9810]; p=0⋅023; figure 4A). Of note, the
estimated rate of change of donor 17’s RC-LVR was
significantly positive (7⋅4 × 10–4 logit infectious units per
million [IUPM] per day [95% credibility interval 3⋅2 × 10–4 to
1⋅2 × 10–3]; appendix 3 pp 2–3), and this participant also had
the highest observed median Nef-mediated MHC-I down-
regulation (122⋅7% of NL4-3 Nef; figures 3A, 4A). Of the
remaining 13 study participants, the estimated rate of
change of three participants’ RC-LVRwas positive, whereas
the estimated rate of changeof tenparticipants’RC-LVRwas
negative. Of these ten participants, four donors had sig-
nificantly negative estimated rates of change of the RC-LVR
(donor 20: –1⋅1 × 10–3 logit IUPM per day [95% credibility
interval –1⋅8 × 10–3 to –3⋅7 × 10–4]; donor 31: –1⋅4 × 10–3

[–2⋅0 × 10–3 to –8⋅5× 10–4]; donor 41: –7⋅0 × 10–4 [–1⋅3 × 10–3

to –1⋅6 × 10–4]; and donor 78: –2⋅0 × 10–3 [–2⋅9× 10–3 to
–1⋅1 × 10–3]; figure 4; appendix 3 pp 2–3). By contrast, we
found no association between Nef-mediated cell-surface
CD4 downregulation and the rate of change in RC-LVR
size (r=–0⋅1604 [95% CI–0⋅7311 to 0⋅4102]; p=0⋅58;
figure 4B).

Discussion
Our analysis suggests Nef as a viral factor associated with
changes in the size of the of the inducible RC-LVR in a
cohort of people with non-subtype B HIV-1 in Uganda.
Nef-dependent MHC-I downregulation was significantly
correlatedwith the rate of change in RC-LVR size over time.
Thus, more efficient Nef-dependent MHC-I downregulation
could slow the rate of RC-LVR decay during long-term ART.
To our knowledge, this is the first report of a viral or host
factor associated with changes in the size of the RC-LVR over
time during long-term ART.
Most research characterising the LVR in people with

HIV-1 on ART has focused on cross-sectional analyses of
predominantly subtype B HIV-1 infections, despite more
than 80% of people with HIV-1 being affected by
non-subtype B HIV-1.22 We previously reported that the
RC-LVR was significantly smaller in this cohort from
Uganda than in a cohort from the USA with exclusively
www.thelancet.com/microbe Vol ▪ ▪ 2025
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subtype B HIV-1.14 Additionally, a study conducted in
Canada showed that participants with non-subtype BHIV-1
had significantly smallerRC-LVR thandid thosewith subtype
B HIV-1.13 Although our cohort had no participants with
subtype BHIV-1, subtype BNef is generally more efficient
atMHC-I downregulation than non-subtype BNef.28 Thus,
variability in Nef functionality could contribute to differences
in RC-LVR size when comparing HIV-1 subtypes. Although
we did not observe significant differences in Nef function
between subtypes A1 and D, the genetic variability between
subtypes warrants a broader analysis.28

The relationship between Nef-mediated cell surface
MHC-I downregulation and the LVR observed in our study
is consistent with a previous study, in which Nef-mediated
MHC-I, but not CD4, downregulation positively correlated
with RC-LVR size.13 This previous study predominantly
included people with subtype B HIV-1 who started ART
shortly after infection (<6months)whohad viral suppression
for 48 weeks.13 The previous study and the current study
suggest that Nef is a crucial viral determinant in both the
establishment and maintenance of the RC-LVR during
ART.13

Because Nef is expressed in latently infected rCD4+

T cells, our results suggest that efficient Nef-mediated
MHC-I downregulation could shield latently infected cells
from CTL recognition during long-term ART.21 This
shielding could promote persistence and clonal expansion
of these cells, thereby leading to very slow reservoir decay.
Conversely, our analyses suggest that inefficient down-
regulation of MHC-I leads to accelerated RC-LVR decay,
probably through increasedCTL recognitionof viral antigens,
leading to enhanced elimination of latently infected cells.
The genetic characterisation of proviruses derived from
CD4+ T cells of people with HIV-1 on prolonged ART
found that genetically intact proviruses were enriched
in effector memory CD4+ T cells, suggesting effector
memory CD4+ T cells comprise the majority of the
RC-LVR.21 Latently infected effector memory CD4+ T cells
had fewer knownCTL escapemutations in gag and pol than
central memory CD4+ T cells, suggesting these effector
memory CD4+ T cells rely on Nef-mediated down-
regulation of MHC-I to be shielded from CTL elimination.21

Moreover, participant-derived CD4+ T cells infected with
Nef-deficient HIV-1 were cleared more efficiently than
cells infected with HIV-1 upon co-culture with autologous
CTLs. This finding suggests that Nef-mediated MHC-I
downregulation represents a primary mechanism
protecting latently infected effector memory CD4+ T cells
from CTL clearance.21

We found the size of the inducible RC-LVR in peoplewith
HIV-1 on long-termARTwas estimated to possibly increase
in four individuals. This was unexpected, given previous
reports ofRC-LVRdecayonART,but consistentwitha study
measuring the size of the RC-LVR in people with HIV-1 on
very long-term ART (mean duration of 22 years).7,29 This
study observed that the reservoir decays slowly during
short-term ART, with an inflection point at approximately
www.thelancet.com/microbe Vol ▪ ▪ 2025
7 years of ART in which the reservoir begins to slowly
increase in size.29 Because the median time on ART at the
time of enrolment in our study was 8⋅76 years, many
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participantswouldhavebeenapproachingor surpassing the
inflection point, thereby representing a potential con-
founding factor. Additionally, the inducible RC-LVR
becomes more clonal during long-term ART, suggesting
selection occurs within the reservoir during virally
suppressive ART.29 This selection could be driven by Nef’s
ability to evade CTL recognition, because latently infected
cells deficient inMHC-I downregulation would probably be
readily cleared.13,21

Our study also has several limitations. First, our study
population was small; nevertheless, we selected multiple
variants from several individuals, providing amore detailed
examination of intra-individual variability. Moreover, the
longitudinal estimations of change in reservoir size were
derived from a Bayesian model informed by a much larger
study, thereby increasing estimation accuracy.15 Second, we
cannot discount long-term administration of ART longer
than 7 years as a potential factor in our estimations of
change in RC-LVR size because most participants were
enrolled after this point. Third, given that the main study
objective was to identify a potential relationship between
Nef-mediatedhost adaptive immuneevasion and rate ofRC-
LVR decay, we cannot assess whether Nef’s ability to
downregulate MHC-I influenced the persistence of specific
clones over time. Fourth, although this study only explored
the relationship between Nef-mediated MHC-I and CD4
downregulation and the rate of RC-LVR decay, we do
acknowledge that other Nef functions not assessed in this
study—such as SERINC3 and SERINC5 downregulation—
could influence the rate of RC-LVR decay. Nonetheless, we
speculate that the effects of such functions on the RC-LVR
are probably minimal in a virally suppressive ART
context.17 Finally, given the significant effect of switching to
dolutegravir on RC-LVR size in this population, it would be
interesting to examine whether differences in MHC-I or
CD4 downregulation, or both, could be observed in primary
Nef isolates derived before and after the dolutegravir
switch.15

In conclusion, our results identify Nef-mediated down-
regulation of MHC-I as an important viral correlate to
longitudinal changes in the size of the RC-LVR during
prolongedART.Thesefindings suggestNef could influence
both the initial establishment of the RC-LVR before ART
administration and the persistence of the RC-LVR during
long-term (>1 year) ART.13,21 Considering pharmacological
inhibition of Nef-mediated MHC-I downregulation
sensitises latently infected cells to CTL clearance in vitro,30

future studies are warranted to assess whether in-vivo
administration of Nef inhibitors can therapeutically reduce
an established LVR in subtype B HIV-1 and non-subtype
B HIV-1 contexts. Such strategies could be an important
step in developing a functional HIV/AIDS cure.30
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